New Particle Formation and Growth From the Reaction of Methanesulfonic Acid with Amines
and the Ozonolysis of Terpernes
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Introduction / Previous Work on MSA + Amines + H,O

New Mini Flow tube Experiments
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* Recent studies show that aerosols are semi-solid or glassy,*®-?” which will affect the way SVOCs partition into SOA.

e The uptake of SVOCs may be better represented by a condensation mechanism.?8-3°

Modeling
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Use a regional air quality model (UCI-CIT) to asses the impact of kinetics-based
nucleation mechanisms in the South Coast Air Basin of California
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Methodology

Figure 14: Organic nitrate uptake on a-pinene/O, SOA and
Poly(ethylene glycol) seed particles (PEG)
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